Spatially regularized estimation for the analysis of dynamic contrast-enhanced magnetic resonance imaging data

Abstract

Competing compartment models of different complexities have been used for the quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging data. We present a spatial elastic net approach that allows to estimate the number of compartments for each voxel such that the model complexity is not fixed a priori. A multi-compartment approach is considered, which is translated into a restricted least square model selection problem. This is done by using a set of basis functions for a given set of candidate rate constants. The form of the basis functions is derived from a kinetic model and thus describes the contribution of a specific compartment. Using a spatial elastic net estimator, we chose a sparse set of basis functions per voxel, and hence, rate constants of compartments. The spatial penalty takes into account the voxel structure of an image and performs better than a penalty treating voxels independently. The proposed estimation method is evaluated for simulated images and applied to an in vivo dataset.

Publication
Statistics in Medicine, (33), September 2012, pp. 1029–1041
Date
Links